
Replace this file with prentcsmacro.st y for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Deriving Safety Cases for the Formal Safety
Certification of Automatically Generated Code

Nurlida Basir 1

ECS, Southampton University
Southampton, SO17 1BJ, UK

Ewen Denney 2

USRA/RIACS, NASA Ames Research Center
Mountain View, CA 94035, USA

Bernd Fischer 3

ECS, Southampton University
Southampton, SO17 1BJ, UK

Abstract

We present an approach to systematically derive safety cases for automatically generated code from information collected
during a formal, Hoare-style safety certification of the code. We use a generic safety case that is instantiated with respect
to the certified safety property and the program. It is complemented by a static system safety case that argues the safety of
the framework itself, in particular the correctness of the safety policy (i.e., Hoare rules) with respect to the safety property
(i.e., safety claims) and the integrity of the certification system and its individual components. However, the safety case only
makes explicit the formal and informal reasoning principles, and reveals the top-level assumptions and external dependencies
that must be taken into account; the evidence still comes from the formal safety proofs.

Keywords: Automated code generation, Hoare logic, formal code certification, safety case, Goal Structuring Notation.

1 Introduction

Model-based design and automated code generation have become popular, but substan-
tial obstacles remain to their more widespread adoption in safety-critical domains: since
code generators are typically not qualified, there is no guarantee that their output is safe,
and consequently the generated code still needs to be fully tested and certified. In princi-
ple, formal methods such as formal software safety certification [2] could then be used to

1 Email: nb206r@ecs.soton.ac.uk . Supported by the IPTA Academic Training Scheme of the Ministry of Higher
Education of the Malaysian Government.
2 Email: Ewen.W.Denney@nasa.gov . Supported by NASA under awards NCC2-1426 and NNA07BB97C.
3 Email: b.fischer@ecs.soton.ac.uk

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:nb206r@ecs.soton.ac.uk
mailto:Ewen.W.Denney@nasa.gov
mailto:b.fischer@ecs.soton.ac.uk

Basir and Denney and Fischer

demonstrate the required safety and integrity level. These rely on formal proofs as explicit
evidence or certificates for the assurance claims, but typically require the developers to pro-
vide detailed logical annotations to construct the safety proofs. In previous work, we have
addressed this problem and developed a technique to automatically infer these annotations
for automatically generated code [4,5]. However, several problems remain. For automat-
ically generated code it is particularly difficult to relate the proofs to the code; moreover,
the proofs are the final stage of a complex process and typically contain many details. This
complicates an intuitive understanding of the assurance claims provided by the proofs. The
complexity of the involved tools can lead to unforeseen interactions (e.g., due to errors in
syntax translations) and thus causes additional concerns about the trustworthiness of the
assurance claims.

Here, we build on our previous work to address these problems. We present an approach
currently under development to systematically (and ultimately automatically) derive safety
cases from information collected during annotation inference. The approach is based on a
generic, multi-tiered safety case that is instantiated with respect to a given safety property
and program. The upper tier instantiates the framework for the given safety property. It
refers to another, completely static safety case that argues the safety of the formal certifi-
cation framework itself, in particular the correctness of the safety policy (i.e., Hoare rules)
with respect to the safety property (i.e., safety claims). The lower tiers argue the safety
of the program as governed by the safety property. However, they cannot be simply in-
stantiated from a generic “blueprint” but need to be constructed individually to reflect the
program structure. Fortunately, this can be done systematically because the overall argu-
ment structure is determined by the certification framework and directly follows the course
the annotation inference algorithm takes through the program. The lower tiers refer to the
safety proofs and to a system-wide safety case arguing the integrity of the certification
system and its individual components such as the domain theory or the theorem prover.

This paper describes work still in progress. So far we have developed the overall struc-
ture of the generic program safety case and manually instantiated it for the first examples,
using only information logged by the annotation inference algorithm. We expect that this
process can be automated easily and that it will furthermore be straightforward to inte-
grate with existing tools to construct safety cases such as Adelard’s ASCE tool [1]. We
have already started to develop the safety case for the certification system and its individual
components, but not for the one for the framework. We believe that the combined safety
cases (i.e., for the program, the formal framework, the certification system and its indi-
vidual components, and the safety proofs) will clearly communicate the safety claims, key
safety requirements, and evidence required to trust the generated code. We expect that this
will alleviate any distrust in code generators, which is still a problem in using automated
code generation techniques in safety-critical applications.

2 Formal Software Safety Certification

The purpose of formal software safety certification is to formally demonstrate that a pro-
gram does not violate certain conditions during its execution. A safety property is an exact
characterization of these conditions, based on the operational semantics of the program-
ming language. A safety policy is a set of Hoare rules designed to show that safe programs
satisfy the safety property of interest. The rules are formalized using the usual Hoare

2

Basir and Denney and Fischer

triples extended with a “shadow” environment which records safety information related to
the corresponding program variables, and a safety predicate that is added to the computed
verification conditions (VCs) [2]. As a variant of program verification, formal software
safety certification follows the same technical approach. A VC generator (VCG) traverses
the code backwards and applies the Hoare rules to produce VCs, starting with the postcon-
dition true. If all VCs are proven by an automated theorem prover (ATP), the program is
safe wrt. the safety property.

Our example uses initialization safety but our framework can handle a variety other
safety properties including absence of out-of-bounds array accesses and nil-pointer deref-
erences [2,6]. However, it is not restricted to showing exception freedom but can also
encode domain-specific properties such as matrix symmetry or coordinate frame consis-
tency, whose violation will not (immediately) cause a run-time exception but still renders
the code unsafe.

3 Annotation Inference

Since the ATP has no access to the program internals, annotations must formalize all per-
tinent information that is required to prove that potentially unsafe use locations are in fact
safe. If the program is safe, this information will be established at some definition location
and maintained along all control-flow paths to the use locations. The aim of annotation
inference is to “get information from definitions to uses”, i.e., to find the endpoints of all
such def -use-chains, to construct the formulae used in the annotations, and to annotate the
program such that the VCG has the necessary information as it works its way back through
the program. The notions of definitions and uses are specific to the given safety property.
For initialization safety, definitions correspond to the different variable initializations while
uses are statements which read a variable. For array bounds safety, definitions are the array
declarations since the shadow variables get their values from the declared bounds, while
uses are statements which access an array variable. We can exploit the idiomatic structure
of automatically generated code (i.e., the fact that the code exhibits some regular structure
beyond the syntax of the programming language and uses similar constructions for similar
tasks) and use patterns to describe definitions, uses, and irrelevant code fragments.

The annotation inference algorithm first scans the code for relevant use locations. For
each used variable, it builds an abstracted control flow graph where code fragments match-
ing the patterns are collapsed into single nodes. It then follows all paths backwards from the
variable’s use nodes until it encounters either a cycle or a definition node for the variable.
Paths that do not end in a definition are discarded and the remaining paths are traversed
node by node. Annotations are added to all intermediate nodes that otherwise constitute
barriers to the information flow before the definitions themselves are annotated. The form
of the annotations is fully determined by the safety property and the known syntactic struc-
ture of the definitions, as described by the pattern.

4 Deriving Safety Cases via Annotation Inference

In our work, we consider each violation of the given safety property as a hazard. To demon-
strate that this hazard can not lead to a system failure, we construct a safety case that argues
that the safety property is in fact not violated and thus that the risk associated with this haz-

3

Basir and Denney and Fischer

Context: Goal:

the "initialization−before−use" safety property.

The code is safe to execute wrt. Context:

Context:

Context:

Constraint:

Strategy: Model:

Justification:

Goal: Goal:Context:

Justification:

Model:

Constraint:

Constraint:

quaternion_ds1

represenation only

Formal argument based on partial

correctness wrt. initialization−before−use policy

safety property during execution

maintained continuously by program

element is explicitely assigned value before it is read

initialization−before−use = variable / array

safety property = requirement to be

safe = code does not violate givenGenerated by AutoFilter from the model

Certification works on intermediate

focus on given safety property only

using specific proof rules

Hoare−style program verification

of execution

partial correctness proof only

(no termination)

proof of correctness ensures safety

Formalization of safety policy is adequateall read accesses to all variables

are safe wrt. initialization−before−use

Semantic safety definition

n, n’ |= x safe iff x = init

use "shadow variables" to record safety

relevant information corresponding to variables

init init

read accesses

safety policy defined in terms of

Fig. 1. Tier I of Derived Safety Case: Arguing the Approach

ard is controlled or mitigated. The high-level structure of this argument can be constructed
from information collected by the annotation inference algorithm. However, the evidence
still comes from the formal safety proofs. The safety case only makes explicit the formal
and informal reasoning principles, and reveals the top-level assumptions and external de-
pendencies that must be taken into account. It can thus be thought of as “structured reading
guide” for the safety proofs.

Here, we provide a simplified overview of this safety case. We concentrate on its
generic structure and describe its different tiers. We further concentrate on the program
itself, leaving the remaining elements (i.e., for the formal framework, the certification sys-
tem and its individual components, and the safety proofs) of the system-wide safety case
for future work.

4.1 Tier I: Arguing the Approach

Figure 1 shows the goal structure for the top tier of the safety case. It starts with the top-
level safety goal (i.e., the safety of the generated code with respect to the safety property
of interest) and shows how this is achieved by a formal argument based on the partial
correctness of the generated code. The argument stresses the meaning of the Hoare-style
framework. It uses contexts to explain the informal interpretation of key notions like “safe”
and “safety property” and constraints to outline limitations of the approach, in particular the
fact the certification works on an intermediate representation of the source code and only
shows a single property. Hyperlinks refer to additional evidence in the form of documents
containing, for example, the model from which the source code has been generated.

The key strategy at this tier and its model (i.e., a Hoare-style partial correctness proof
using the dedicated proof rules of the init-before-use safety policy) as well as its limitations
(i.e., no termination proof) are made explicit. The strategy reduces showing the safety of
the whole program to showing the safety of all read accesses, which emerges as first sub-
goal. This is justified by the fact that the safety property is defined in terms of variable read
accesses. The subgoal is further elaborated by a model of the semantic safety definition,
which exactly defines what is meant by “safe”, using the notion of shadow variables given
as context. The strategy’s second subgoal is to show that the safety policy adequately repre-
sents the safety property, which is also the foundation of the strategy’s original justification

4

Basir and Denney and Fischer

Goal: all read accesses to all variables

are safe wrt. initialization−before−use

Strategy: Justification:Assumption:

Goal:

Strategy:

Goal:

Goal:

Goal:

Goal:

Justification:

Goal:

Goal:

Justification:

Assumption: Justification:

individually

... ...

...

... ...

...

individual variables

xinit is safe

xhatmin is safe at location #205 xhatmin is safe at location #294xhatmin is safe at location #161

access occurrences of xhatmin safety property

r is safe

Formal argument over all read

xhatmin is safe

Formal argument over each variable

Complete list of occurrences

Complete list of variables

Soundness and completeness of

safety policy

Safety property defined on

Only read accesses can violate

instantiation of the safety predicate over occurrence

Safety condition is derived by
init

Safety condition xhatmin (3,0) = init holds

at this location

Fig. 2. Tier II of Derived Safety Case: Arguing over the Variables

Strategy: Justification:

Goal: Safety condition xhatmin (3,0) = init holds

at this location

Goal: Goal:

Assumption:

Assumption:

Strategy:

Goal: xhatmin is defined

at lines 154−159

Goal: xhatmin is defined

at line 288

Strategy:

Goal:

Goal:

Goal: Goal: Goal:

individual variables

Safety property defined onFormal argument over establishment,

maintenance, and strength of variable safety

at this location

Complete list of VCs

Complete list of Paths

of variable safety

Formal argument over establishment

Goal:

to this location

Variable safety is established on all paths Variable safety is maintained on all paths

Formal argument over all paths

VC quaternion_04

is proven is proven

VC quaternion_07

Variable safety from all paths implies

safety condition

is proven

VC quaternion_30

Model: Sequence

of assignments

Model: Matrix

assignment
...

......VC quaternion_14

is proven is proven

VC quaternion_17

Goal: variable safety is

maintained along path #1

Goal: variable safety is

maintained along path #4

Fig. 3. Tier III of Derived Safety Case: Arguing over the Paths

(i.e., the claim that the proofs ensure the safe execution of the program). This subgoal is
not elaborated further in this safety case but leads to the static framework safety case.

4.2 Tier II: Arguing over the Variables

The second tier reduces the safety of all variables in two steps, first to the safety of each
individual variable (justified by the fact that the safety property is defined on individual
variables) and then to the safety of the individual occurrences. Note that the number of
subgoals of both strategies (see Figure 2 for the goal structure) and the safety conditions
are program-specific. This information is provided by the annotation inference.

Both strategies are predicated on the assumption that they iterate over the complete list
of variables (resp. occurrences). Each individual occurrence then leads to a subgoal to show
that the computed safety condition is valid at the location of the variable’s occurrence. This
reduction to a formal proof obligation is justified by the soundness and completeness of the
safety policy; in addition, the specific form of the safety condition is also justified.

4.3 Tier III: Arguing over the Paths

The final tier (see Figure 3 for the goal structure) argues the safety of each individual vari-
able access, using a strategy based on establishing and maintaining appropriate invariants.

5

Basir and Denney and Fischer

This directly reflects the course the annotation inference has taken through the code. The
first subgoal is thus to show that the variable safety is established on all paths leading to
the current location, using a formal argument over all definition locations. Here, the model
for the subgoal corresponds to the pattern that was applied during annotation inference to
match the definition. Each definition thus leads to a corresponding subgoal and then further
to any number of VCs, although here only a single VC emerges in both cases.

The association of the VCs to the definition is based on tracing information added by the
VCG. The second subgoal of the top-level strategy is to show that the established variable
safety is maintained along all paths. This proceeds accordingly. The final subgoal is then
to show that the variable safety implies the validity of the safety condition. This can again
lead to any number of VCs. If (and only if) all VCs can be shown to hold, then the safety
property holds for the entire program. The evidence for the VCs is provided by the formal
proofs; we plan to convert these into safety cases as well.

5 Conclusions

Software development standards for safety-critical domains such as DO-178B [7] are typ-
ically process-oriented and require that code generators are qualified for application, often
using an elaborate testing regime [8]. This time-consuming and expensive process slows
down generator development and application. We believe that product-oriented assurance
approaches are a viable alternative. Here, assurance is not implied by the trust into the
generator but follows from an explicitly constructed argument for the generated code. We
further believe that formal methods such as formal software safety certification can provide
the highest level of assurance of the code’s safety and integrity. However, the proofs by
themselves are no panacea, and it is important to make explicit which claims are actually
proven, and on which assumptions and reasoning principles both the claim and the proof
rest. We believe that purely technical solutions such as proof checking [10] fall short of the
assurance provide by our safety case. In fact, we consider the safety case only as a first step
towards a full-fledged software certificate management system [3].

We have described work still in progress. So far, we have developed the overall structure
of the generic program safety case and instantiated it manually. The example shown here
uses code generated by our AutoFilter system [9], but the underlying annotation inference
algorithm has also been applied to code generated from Matlab models using Real-Time
Workshop, and we expect that the same derivation can be applied there as well. Current
work involves constructing a system-wide safety case that covers all remaining components
(i.e., for the formal framework, the certification system and its individual components, and
the safety proofs) used in certification.

References

[1] ASCE home page (2007), www.adelard.com/web/hnav/ASCE .

[2] Denney, E. and B. Fischer, Correctness of source-level safety policies, in: K. Araki, S. Gnesi and D. Mandrioli, editors,
Proc. FM 2003: Formal Methods, LNCS 2805 (2003), pp. 894–913.

[3] Denney, E. and B. Fischer, Software certification and software certificate management systems (position paper), in:
Proceedings of the ASE Workshop on Software Certificate Management Systems (SoftCeMent’ 05), 2005, pp. 1–5.

[4] Denney, E. and B. Fischer, Annotation inference for safety certification of automatically generated code (extended
abstract), in: S. Uchitel and S. Easterbrook, editors, Proc. 21st ASE (2006), pp. 265–268.

6

Basir and Denney and Fischer

[5] Denney, E. and B. Fischer, A generic annotation inference algorithm for the safety certification of automatically
generated code, in: S. Jarzabek, D. C. Schmidt and T. L. Veldhuizen, editors, Proc. Conf. Generative Programming
and Component Engineering (2006), pp. 121–130.

[6] Necula, G. C., Proof-carrying code, in: Proc. 24th POPL (1997), pp. 106–19.

[7] RTCA, “Software Considerations in Airborne Systems and Equipment Certification,” RTCA, 1992.

[8] Stürmer, I. and M. Conrad, Test suite design for code generation tools, in: Proceedings of 18th IEEE International
Conference on Automated Software Engineering (2003), pp. 286–290.

[9] Whittle, J. and J. Schumann, Automating the implementation of Kalman filter algorithms, ACM Transactions on
Mathematical Software 30 (2004), pp. 434–453.

[10] Wong, W., Validation of HOL proofs by proof checking, Formal Methods in System Design: An International Journal
14 (1999), pp. 193–212.

7

	Introduction
	Formal Software Safety Certification
	Annotation Inference
	Deriving Safety Cases via Annotation Inference
	Tier I: Arguing the Approach
	Tier II: Arguing over the Variables
	Tier III: Arguing over the Paths

	Conclusions
	References

